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Abstract

It is the main purpose of this paper to study the asymptotics of vari-

ants of the empirical process in the context of survey data. Precisely, a

functional central limit theorem is established when the sample is picked

by means of a Poisson survey scheme. This preliminary result is then

extended to the case of the rejective or conditional Poisson sampling case,

and in turn to high entropy survey sampling plans which are close to

the rejective design in the sense of the Bounded-Lipschitz distance. The

framework we develop encompasses survey sampling designs with non-

uniform first order inclusion probabilities, which can be defined so as to

optimize estimation accuracy. Applications to Hadamard- and Fréchet-

differentiable functionals are also considered together with the construc-

tion of uniform confidence bands of the cumulative distribution function.

Related simulation results are displayed for illustration purpose.

Keywords: empirical processes; survey sampling; rejective scheme;

Poisson scheme; functional central limit theorem; coupling
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1 Introduction

This paper is devoted to the study of the limit behavior of extensions of the em-

pirical process based on independent and identically distributed (iid) samples,

when the data available have been collected through an explicit survey sam-

pling scheme. Indeed, in many situations, statisticians have at their disposal

not only data but also weights arising from some survey sampling plans. They

correspond either to true inclusion probabilities, as is often the case for insti-

tutional data, or to some calibrated or post-stratification weights (minimizing

some discrepancy with the inclusion probabilities subject to some margin con-

straints, for instance). In most cases, the survey scheme is ignored, potentially

yielding a significant sampling bias. When considering some functional of the

empirical process, this may cause severe drawbacks and completely jeopardize

the estimation, as can be revealed by simulation experiments (Bonnéry et al.,

2011). From another point of view, when the available data is so voluminous

that a single computer cannot treat the entire dataset, survey sampling appears

as a natural remedy (Cardot et al., 2013). In particular, as opposed to simple

sub-sampling, it permits to control the efficiency of estimators via the strategic

definition of unequal survey weights.

Our main goal is here to investigate how to incorporate the survey scheme

into the inference procedure dedicated to the estimation of a probability mea-

sure P on a measurable space (viewed as a linear operator acting on a certain

class of functions F), in order to guarantee its asymptotic normality. This prob-

lem has been addressed by Breslow and Wellner (2007) and Gill et al. (1988)

in the particular case of a stratified survey sampling, where the individuals are

selected at random (without replacement) in each stratum, by means of boot-

strap limit results. Our approach is different and follows (and extends) that

of Hàjek (1964), considered next by Berger (1998, 2011), and is applicable to

more general sampling surveys, namely those with unequal first order inclusion

probabilities which are of the Poisson type or sequential/rejective. Such sam-

pling designs have the advantage of allowing a fine control over the variance of
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estimators via the preliminary definition of survey weights. In the context of

big data, they can even be optimized to guarantee an efficiency almost as good

as if the entire dataset was reachable.

The main result of the paper is a Functional Central Limit Theorem (FCLT)

describing the limit behavior of an adequate version of the empirical process (re-

ferred to as the Horvitz-Thompson empirical process throughout the article) in

a superpopulation statistical framework. The key argument involved in this

asymptotic analysis consists in approximating the distribution of the extended

empirical process by that related to a much simpler sampling plan. In order to

illustrate the reach of this result, statistical applications are considered, where

the extensions of the empirical process are used to construct confidence bands

around the Horvitz-Thompson estimator of the cumulative distribution func-

tion.

The paper is organized as follows. In Section 2, the statistical framework

is described at length, notations are set out and some basics on survey sam-

pling theory are recalled, together with important examples of survey schemes

to which the subsequent asymptotic analysis can be applied. The main result

of the paper, a FCLT for the Horvitz-Thompson empirical process is stated in

Section 4, after a thorough description of the processes of interest in Section 3.

Supplementary Materials are also available for this article. They include in par-

ticular applications to nonparametric functional estimation, numerical experi-

ments on confidence band interval construction for the cumulative distribution

function and technical details.

2 Background and Preliminaries

We start off with recalling some crucial notions in survey sampling and in mod-

ern empirical process theory, which shall be extensively used in the subsequent

analysis. Throughout the article, the Dirac mass at x in some vector space X
is denoted by δx and the indicator function of any event E by I {E}. We also
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denote by #E the cardinality of any finite set E , and by P(E) its power set.

2.1 Survey sampling: some basics

The purpose of survey sampling is to study some characteristics of a population

UN of N ≥ 1 units (or individuals) identified by an arbitrary collection of labels:

UN := {1, . . . ,N}. When it is not possible to reach the whole population (e.g.

with big data), the features of interest can be estimated from a finite, relatively

small number of its elements, namely a sample s := {i1, . . . , in(s)} ⊂ UN of size

n(s) ≤ N, selected at random within UN (see for instance Tillé, 2006, Chap-

ter 1, Tillé, 1999 or Gourieroux, 1981 for an introduction to random sampling).

Equipped with this representation, a sampling scheme (design/plan) is deter-

mined by a discrete probability measure RN on P(UN), the set of all possible

samples in UN. Depending on the adopted point of view, like in superpopulation

models, the characteristics of the population can be considered random too. In

the next paragraphs, crucial concepts and notations are introduced concerning

both sources of hazard.

2.1.1 Survey schemes without replacement

Consider a sampling scheme RN without replacement ; our analysis is restricted

to this popular family of survey plans. By definition, we always have

∀ s ∈ P(UN), RN(s) ≥ 0 and
∑

s∈P(UN)

RN(s) = 1,

and the mean survey sample size is given by

ERN
(n(S)) =

∑

s∈P(UN)

n(s)RN(s).

Here, the notation ERN
(.) denotes the expectation taken with respect to the

random sample S with distribution RN. In a similar fashion, PRN
(S ∈ S) refers

to the probability of the event {S ∈ S} with S ⊂ P(UN), when S is drawn

from RN. In particular, RN(s) = PRN
(S = s). Such distributions are entirely

characterized by the concepts listed below.
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Inclusion probabilities For any i ∈ UN, the quantity usually referred to as

the i-th (first order) inclusion probability,

πi(RN) := PRN
(i ∈ S) =

∑

s∈P(UN)

RN(s) I {i ∈ s} ,

is the probability that the individual labeled i belongs to a random sample S

under the survey scheme RN. When there is no ambiguity on the sampling

design, notations will be simplified and πi will be used instead of πi(RN). In

the subsequent analysis, first order inclusion probabilities are assumed to be

strictly positive: ∀ i ∈ UN, πi(RN) > 0. We shall even require the stronger

hypothesis that they never get either too small or too large, as formally stated

below.

Assumption 2.1 There exist π⋆ > 0 and N0 ∈ N∗ such that for all N ≥ N0

and i ∈ UN, πi(RN) > π⋆. In addition, lim sup
N→+∞

1
N

∑N
i=1 πi(RN) < 1.

When the first condition holds, the rate of convergence of the estimators con-

sidered in Section 3 and Section 4 will be shown to be typically of order 1/
√
N.

One could possibly relax it and allow π⋆ to depend on N, with π⋆ = π⋆(N)

decaying to zero as N tends to infinity at a specific rate, and still be able to

establish limit results. The analysis would be however much more technical;

this is left for further research.

Conditions involving the second order inclusion probabilities shall also be

used in our asymptotic analysis. They are denoted by

πi,j(RN) := PRN

(
(i, j) ∈ S2

)
=

∑

s∈P(UN)

RN(s) I {{i, j} ⊂ s} ,

for all (i, j) ∈ U2
N. In other words, πi,j(RN) is the probability that two distinct

individuals labeled i and j are jointly selected under design RN. Again, πi,j

may eventually be used when there is no need to emphasize the dependency on

the sampling plan RN. Notice that higher order inclusion probabilities may be

defined in a similar way, up to the maximal order for which the entire population

is selected.
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Inclusion indicators The information related to the observed sample S is

encapsulated by the random vector ǫ(N) := (ǫ1, . . . , ǫN), where

ǫi := I {i ∈ S} =






1 with probability πi,

0 with probability 1− πi.

Notice indeed that the set P(UN) of all possible samples is in one-to-one cor-

respondence with {0, 1}N, which provides a handy alternative representation of

sampling schemes. Again, for simplicity, the subscript (N) shall be omitted

when no ambiguity is possible. By definition, the distribution of ǫ := ǫ(N)

has univariate marginals that correspond to the Bernoulli distributions B(πi),

i ∈ UN, and covariance matrix given by

ΓN := {πi,j − πiπj}1≤i, j≤N .

Incidentally we have
∑N

i=1 ǫi = n(S) and thus
∑N

i=1 πi = ERN
(n(S)).

Before considering the issue of extending the concept of empirical process

in the context of survey sampling, we recall a few important classes of survey

schemes, to which the results established in Section 3 and Section 4 can be

applied. One may refer to Deville (1987) for instance for an excellent account

of survey theory, including many more examples of sampling designs.

Example 2.1 – Simple Random Sampling Without Replacement. A simple ran-

dom sampling without replacement (SRSWOR in abbreviated form) is a sam-

pling design of fixed size n(S) = n, according to which all samples with car-

dinality n in the population UN are equally likely to be chosen, with proba-

bility (N − n)!/n!. It follows that all units of UN have the same chance of

being selected, n/N namely, and all second order probabilities are equal to

n(n− 1)/(N(N− 1)).

Example 2.2 – Poisson survey sampling. The Poisson sampling plan without

replacement (POISSWOR), denoted here by TN, is one of the simplest survey
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schemes. In this case, the N elements of ǫ are independent Bernoulli random

variables with respective parameters πi(TN) =: pi, i ∈ {1, . . . ,N} so that for any

sample s ∈ P(UN),

TN(s) =
∏

i∈s

pi

∏

i/∈s

(1− pi) .

Notice that the size n(S) of sample S with distribution TN is random (except in

the sole situation where pi ∈ {0, 1} for i = 1, . . . ,N) and that the corresponding

survey plan is fully characterized by the first order inclusion probabilities. In

the specific situation where they are all equal, i.e. p1 = · · · = pN = p, the

design is called Bernoulli.

Example 2.3 – Stratified sampling. A stratified sampling design permits to

draw a sample S of fixed size n(S) = n ≤ N within a population UN that

can be partitioned into K ≥ 1 distinct strata UN1
, . . . ,UNK

(known a priori) of

respective sizes N1, . . . , NK adding up to N. Let n1, . . . , nK be non-negative

integers such that n1+· · ·+nK = n, then the drawing procedure is implemented

in K steps: within each stratum UNk
, k ∈ {1, . . . , K}, perform a SRSWOR of

size nk ≤ Nk yielding a sample Sk. The final sample is obtained by assembling

these sub-samples: S =
⋃K

k=1 Sk. The probability of drawing a specific sample

s by means of this survey scheme is

Rstr

N (s) =

K∑

k=1

(
Nk

nk

)−1

.

Naturally, first and second order inclusion probabilities depend on the stratum

to which each unit belong: for all i 6= j in UN,

πi(R
str

N ) =

K∑

k=1

nk

Nk
I {i ∈ UNk

}

and πi,j(R
str

N ) =

K∑

k=1

nk(nk − 1)

Nk(Nk − 1)
I
{
(i, j) ∈ U2

Nk

}
.

Example 2.4 – Canonical Rejective Sampling. Let n ≤ N and consider a vector

π
R := (πR

1 , . . . , π
R
N) of first order inclusion probabilities. Further define Sn :=
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{s ∈ P(UN) : #s = n}, the set of all samples in population UN with cardinality n.

The rejective sampling (Hàjek, 1964; Berger, 1998), sometimes called conditional

Poisson sampling (CPS), exponential design without replacement or maximum

entropy design (Tillé, 2006, Section 5.6), is the sampling design RR
N that selects

samples of fixed size n(s) = n so as to maximize the entropy measure

H(RN) = −
∑

s∈Sn

RN(s) logRN(s),

subject to the constraint that its vector of first order inclusion probabilities

coincides with π
R. It is easily implemented in two steps:

1. draw a sample S with a POISSWOR plan TN = T
p

N, with properly chosen

first order inclusion probabilities vector p := (p1, . . . , pN). The repre-

sentation is called canonical if
∑N

i=1 pi = n. In that case, relationships

between each pi and πR
i , 1 ≤ i ≤ N, are established in Hàjek (1964).

2. If n(S) 6= n, then reject sample S and go back to step one, otherwise stop.

Vector p must be chosen in a way that the resulting first order inclusion proba-

bilities coincide with π
R, by means of a dedicated optimization algorithm (Tillé,

2006, Algorithms 5.5 to 5.9). The corresponding probability distribution is given

for all s ∈ P(UN) by

RR
N(s) =

T
p

N(s) I {#s = n}
∑

s′∈Sn
T
p

N(s′)
∝

∏

i∈s

pi

∏

i/∈s

(1− pi)× I {#s = n} ,

where ∝ denotes the proportionality. We refer to Hàjek (1964, p.1496) for more

details on the links between rejective and Poisson sampling plans.

Example 2.5 – Rao-Sampford Sampling. The Rao-Sampford sampling design

generates samples s ∈ P(UN) of fixed size n(s) = n with respect to some given

first order inclusion probabilities πRS := (πRS
1 , . . . , πRS

N ), fulfilling the condition
∑N

i=1 π
RS
i = n, with probability

RRS
N (s) = η

∑

i∈s

πRS
i

∏

j/∈s

πRS
j

1− πRS
j

.
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Here, η > 0 is chosen such that
∑

s∈P(UN) R
RS
N (s) = 1. In practice, the following

algorithm is often used to implement such a design (Berger, 1998):

1. select the first unit i with probability πRS
i /n,

2. select the remaining n− 1 units j with drawing probabilities proportional

to πRS
j /(1− πRS

j ), j = 1, . . . , N,

3. accept the sample if the units drawn are all distinct, otherwise reject it

and go back to step one.

2.1.2 Superpopulation models

The characteristics of interest in population UN are modeled as follows. We

consider the probability space (UN,P(UN),P) and a random variable/vector

X defined on the latter, taking its values in a Banach space (X , ‖.‖), with

probability measure P. We set

X :


 UN −→ X

i 7−→ X(i) =: Xi


 ,

and the σ-algebra induced by the normed vector space topology structure of

X is denoted by A. Then, the studied features correspond to some synoptic

mapping (X1, . . . ,XN) 7→ f(X1, . . . ,XN).

In survey sampling, a superpopulation is basically an imaginary infinite pop-

ulation, U∞ say, from which UN is supposed to be issued. In a model-based

approach, it is assumed that the random vectors of interest X1, . . . ,XN are in

fact realizations of N random vectors X̃j : U∞ → X , 1 ≤ j ≤ N, with joint

distribution Q. Then, a superpopulation model is simply a set of conditions

that characterize Q (Droesbeke et al., 1987, Chapter 4). The main advantage of

such a framework is that it often facilitates statistical inference; in particular, it

permits the development of an asymptotic theory, when sample and population

sizes grow conjointly to infinity. The superpopulation model we consider here

9



P. Bertail, E. Chautru, S. Clémençon

stipulates that all N random vectors Xi, i ∈ UN, are independent identically

distributed (iid) with common distribution P, i.e. Q = P⊗N, where ⊗ denotes

the tensor product of measures.

Remark 2.1 The most celebrated iid superpopulation model that we adopt

here establishes a setting very similar to that of weighted bootstrap (Arcones

and Giné, 1992; Barbe and Bertail, 1995): the original iid N-sample there would

correspond to the complete vector (X1, . . . ,XN), from which sub-samples are

drawn according to some procedure likened to the survey scheme. Actually, both

approaches are completely equivalent if the survey weights (ǫ1/π1, . . . , ǫN/πN)

are exchangeable (i.e. theN-variate distribution of this vector is invariant to the

order of its elements). For instance, in the specific case of stratified sampling,

drawing units with equal probabilities in each stratum (with a finite and given

stratum-size) amounts to bootstrapping (without replacement) in some given

cell. It is not surprising then that both Breslow and Wellner (2007) and Saegusa

and Wellner (2011) construct a general asymptotic theory in two-phase sampling

by using bootstrap type results.

2.1.3 Auxiliary information

In practice, sampling from a population UN is only possible if all individuals are

listed somehow, and can be identified once selected. Such documents are called

survey frames; in the case of social surveys, they are collected by government

institutions and often provide some minimal information about its components.

These auxiliary variables, supposedly known for all i ∈ UN, can sometimes be

used to optimize in some sense the survey scheme. In a superpopulation frame-

work, we denote by W the auxiliary random vector, valued in some measurable

space W, and set W(N) := (W1, . . . ,WN). As soon as W is correlated with X,

the vector of interest, it becomes possible to boost the efficiency of estimators by

defining inclusion probabilities as a function of W(N) (Droesbeke et al., 1987).

In the present analysis, we denote by PX,W the joint distribution of (X,W)

and by PW the marginal distribution of W. Like in most applications, we as-
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sume that theWi’s are independent (or exchangeable) random variables/vectors,

linked to the variable of interest X through a linear model (notice that W may

be constant over the population). It is required though that W is not propor-

tional to X (in a deterministic sense) to avoid degenerate situations; in such a

case, knowing W on the whole population would mean knowing the empirical

process without any error. For the sake of simplicity, the dependence of survey

weights in W will only be emphasized when it is necessary, starting in Section 4.

2.2 Empirical process indexed by classes of functions

In the context of iid realizations X1, . . . ,XN of a probability measure P, empir-

ical process theory (Ledoux and Talagrand, 1991) consists in the study of the

fluctuations of random processes of the type {GNf, f ∈ F }, where GN := PN−P.

There, class F designates a certain set of P-integrable real-valued functions,

PN :=
1

N

N∑

i=1

δXi

is the “classical” empirical measure, and for any signed measure Q on a measur-

able space (X ,A), Qf :=
∫
X
f(x)Q(dx) when the integral is well-defined. We

assume that class F admits a square integrable envelope H as defined below.

Assumption 2.2 There exists a measurable function H : X → R such that
∫
X
H2(x)P(dx) < ∞ and |f(x)| ≤ H(x) for all x ∈ X and any f ∈ F .

As a consequence, F is a subset of the space

L2(P) :=
{
h : X → R, h measurable and ‖h‖22,P := EP

(
h2(X)

)
< +∞

}
.

Notice that we may assume without loss of generality that there exists η > 0

such that H(x) > η for every x ∈ X , even if it entails replacing H by H + η in

the condition above.

2.2.1 Donsker classes

When viewed as a linear operator acting on F , a probability measure P satisfying

Assumption 2.2 may be considered as an element of ℓ∞(F), i.e. the space of all
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maps Φ : F → R such that

‖Φ‖F := sup
f∈F

|Φ(f)| < +∞,

equipped with the uniform convergence norm (or, equivalently, with Zolotarev

metric), namely

‖P−Q‖F := dF (P,Q) = sup
h∈F

∣∣∣∣
∫
hdP−

∫
hdQ

∣∣∣∣,

for any couple of probability measures P and Q. The main purpose of empirical

process theory is to find conditions on the class of functions F guaranteeing

that the distribution of
√
NGN converges, as N → +∞, to that of a Gaussian,

Banach space valued process in ℓ∞(F). Such collections of functions are called

Donsker classes by analogy to the classical results on the empirical distribution

function that analyze
√
N (FN − F), where

FN(x) :=
1

N

N∑

i=1

I {Xi ∈ (−∞ , x1]× · · · × (−∞ , xd]}

and

F(x) := P (X ∈ (−∞ , x1]× · · · × (−∞ , xd])

for x := (x1, . . . , xd) ∈ Rd (see Example 3.1). In particular, the study of the

uniform deviations over F
√
N ‖PN − P‖F

is of great interest, with a variety of applications in statistics, see Shorack and

Wellner (1986). A nearly exhaustive review of asymptotic results ensuring that

F is a Donsker class of functions is available in van der Vaart and Wellner

(1996). The purpose of this paper is to extend typical empirical processes results

obtained for iid data to the framework of survey sampling.

2.2.2 On measurability issues

Recall that the normed vector space (ℓ∞(F), ‖.‖F ) is (generally) a non-separable
Banach space. The major problem one faces when dealing with sums of ran-

dom variables taking their values in such an infinite-dimensional non-separable
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space concerns the measurability of events. For instance, the “classical” em-

pirical process
√
N (FN − F), which can be viewed as a random sequence in

the Skorokhod space D([0, 1]) of càd-làg functions endowed with the supremum

norm, is not Borel/measurable. In this specific case, the topology induced by

the sup-norm on D([0, 1]) can be classically replaced by the Skorokhod metric

in order to overcome this technical difficulty. Alternative approaches can be

found in Pollard (1984). The ideas developed in Hoffmann-Jørgensen (1991)

have led to a general solution, based on the concept of outer probability, ex-

tending the original probability measure P to non-measurable events by setting

P∗(A) := inf {P(B) : A ⊂ B, B measurable }. Then, the related concept of

Hoffman-Jørgensen weak convergence permits somehow to forget the measura-

bility assumptions. Hence, expectations and probabilities must now be under-

stood as outer expectations and probabilities for non-measurable events. For

simplicity, the same notations are kept to denote original and outer probabilities

(resp. expectations). Here, weak convergence is metrized through the bounded

Lipchitz metric on the space ℓ∞(F): for all random functions X and Y valued

in ℓ∞(F),

dBL(X,Y) = sup
b∈BL1(ℓ∞(F))

∣∣E (b(X)) − E (b(Y))
∣∣,

where BL1(ℓ
∞(F)) is the set of all 1-Lipchitz functions on ℓ∞(F) bounded by 1.

In the following we define the ρP semi-metric under P as

ρP(f, g) := EP

(
(f(X) − g(X))2

)
=: ‖f− g‖22,P.

We refer to van der Vaart and Wellner (1996) for technical details and general

results.

2.2.3 Uniform covering numbers

A key concept in the study of empirical process is the covering numberN (ε,F , |.|),

which corresponds to the minimal number of balls of radius ε > 0 for a given

semi metric |.| needed to cover F . Donsker classes of functions are often char-
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acterized by some integrability conditions of the form

∫1

0

√
N (ε,F , |.|) dε < ∞,

arising from maximal inequalities. Such a condition essentially ensures that the

size of class F is not too big and that one may be able to approximate any of

its elements (up to ε) by functions in a set of finite cardinality. In our non-

iid setting, we will essentially consider the L2(P) norm for |.| and use uniform

covering numbers

sup
Q∈D

N (ε‖H‖2,Q , F , ‖.‖2,Q) ,

where D is the set of all discrete probability measures Q such that
∫
H2dQ is

in (0,+∞). Explicit calculus of (uniform) covering numbers for general classes

of functions may be found in several textbooks, see van der Vaart and Wellner

(1996) or van de Geer (2000).

3 Empirical process in survey sampling

We now introduce two different empirical processes built from survey data,

whose asymptotic behaviors shall be investigated at length in Section 4.

3.1 The Horvitz-Thompson empirical process

In the context of survey data drawn through a general survey plan RN, the

empirical measure PN cannot be computed since the whole statistical population

is not observable. Hence, a variant based on the observations must be naturally

considered. For any measurable set M ⊂ X , the Horvitz-Thompson estimator

of the empirical probability PN(M) = N−1
∑N

i=1 δXi
(M) based on the survey

data described above is defined as follows, see Horvitz and Thompson (1951):

P
π(RN)

RN
(M) :=

1

N

N∑

i=1

ǫi

πi
δXi

(M) =
1

N

∑

i∈S

I {i ∈ S}

πi
δXi

(M). (1)

We highlight the fact that the measure P
π(RN)

RN
is an unbiased estimator of P

(resp. PN, when conditioned upon (X1, . . . ,XN)) although it is not a probabil-
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ity measure. For a fixed subset M, the consistency and asymptotic normality of

the estimator in Eq. (1) are established in Robinson (1982) and Berger (1998),

as N tends to infinity. When considering the estimation of measure PN (the

measure of interest in survey sampling) over a class of functions F , we are led

to the asymptotic study of the collection of random processes

G
π(RN)

RN
:=
(
G

π(RN)

RN
f
)

f∈F
,

where

G
π(RN)

RN
f :=

√
N
(
P
π(RN)

RN
− PN

)
f =

1√
N

N∑

i=1

(
ǫi

πi(RN)
− 1

)
f(Xi), (2)

which shall be referred to as the F-indexed Horvitz-Thomson empirical process

(HT-empirical process, in short). The seemingly redundant notation G
π(RN)

RN
is

motivated by the fact that extensions involving first order probabilities related

to a different sampling scheme TN will be considered in the sequel. Precisely,

G
π(TN)

RN
shall denote the process obtained when replacing all πi(RN) by πi(TN),

1 ≤ i ≤ N, in Eq. (2).

The main purpose of this chapter is to establish the convergence of the

re-weighted empirical process (Gπ

RN
f)f∈F under adequate hypotheses involving

some properties of measure P, certain characteristics of the sequence of sam-

pling plans (RN), and the “complexity” of class F (in the classical metric en-

tropy sense) as well. In particular, such a result would permit to describe the

asymptotic behavior of the quantity below (assumed to be almost-surely finite,

see Assumption 2.2):

∥∥∥Gπ(RN)

RN

∥∥∥
F
= sup

f∈F

∣∣∣Gπ(RN)

RN
f
∣∣∣ .

By virtue of Cauchy-Schwarz inequality combined with Assumptions 2.1 and 2.2,

we almost-surely have, ∀N ≥ 1,

∥∥∥Gπ(RN)

RN

∥∥∥
2

F
≤ 1

N

(
N∑

i=1

(
ǫi − πi

πi

)2
)(

N∑

i=1

H2(Xi)

)

≤ 1

π2
⋆

N∑

i=1

H2(Xi) < +∞.

15
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Under Assumptions 2.1 and 2.2, the F-indexed HT-empirical process in

Eq. (2) may thus be seen as a sequence of random elements of ℓ∞(F).

Example 3.1 – Empirical cumulative distribution function. In the case where

X = Rd with d ≥ 1 for instance, a situation of particular interest is that where

F is the class of indicator functions of rectangles of the type




(−∞,x] :=

d∏

j=1

(−∞, xj] , x = (x1, . . . , xd)





.

Then, the empirical process can be identified with the Horvitz-Thompson ver-

sion of the empirical cumulative distribution function (cdf), namely

F
π(RN)

RN
(x) := P

π(RN)

RN
(−∞,x],

x ∈ Rd, and the goal pursued boils down to investigating conditions under

which uniform versions of the Law of Large Numbers (LLN) and of the Central

Limit Theorem (CLT) hold for F
π(RN)

RN
(x) − FN(x), where FN(x) := PN(−∞,x].

As shall be seen later, the study of the asymptotic behavior of this empirical

process lies at the center of the validity of the confidence band construction

considered in the Supplementary Materials.

3.2 Alternative estimate in the Poisson sampling case

The Poisson sampling scheme TN (see Example 2.2) has been the subject of much

attention, especially in Hàjek (1964), where asymptotic normality of (point-

wise) Horvitz-Thompson estimators have been established in this specific case

as well as that of a rejective sampling design with fixed sample size. Indeed, the

sample size resulting from a Poisson sampling plan has a large variance equal

to
∑N

i=1 pi(1 − pi) =: dN. Conditional sampling plans intend to reduce this

volatility. So as to account for the variations of the sample size we consider

the following Poisson version of the empirical process rather than the original

process :

G̃
p

TN
f :=

1√
N

N∑

i=1

(ǫi − pi)

(
f(Xi)

pi
− θN,p(f)

)
, f ∈ F , (3)

16
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where for all f ∈ F , θN,p(f) := d−1
N

∑N
i=1(1 − pi) f(Xi). Notice that θN,p(f) is

the coefficient in the regression

1

N

N∑

i=1

ǫi

pi
f(Xi) = θN,p(f)×

1

N

N∑

i=1

ǫi + ηN,

which fulfills covTN

(
ηN ,

∑N
i=1 ǫi

)
= 0. Provided that dN → +∞ as N tends

to +∞, it has been established in Hàjek (1964, Lemma 3.2) that conditioned

upon (X1, . . . ,XN), for fixed f ∈ F , when N tends to infinity and under a

Lindeberg-Feller type condition, the weighted sum of independent random vari-

ables in Eq. (3) can be approximated by a centered Gaussian random variable

with (conditional) variance

V2
N(f) =

1

N

N∑

i=1

(
f(Xi)

pi
− θN,p(f)

)2

pi(1− pi).

To comprehend why the same result holds true for rejective (or conditional

Poisson) sampling with fixed sample size n in the canonical case (
∑N

i=1 pi = n,

see Hàjek, 1964), simply notice that for a given f, the distribution of the Horvitz-

Thompson mean in the rejective design computed with the Poisson inclusion

probabilities is given by

PRN

(
G

p

RN
f ≤ x

)
= PRN

(
G̃

p

RN
f ≤ x

)

= PTN

(
G̃

p

TN
f ≤ x

∣∣∣∣
N∑

i=1

ǫi = n

)

=
PTN

(
G̃

p

TN
f ≤ x ,

∑N
i=1 ǫi = n

)

PTN

(∑N
i=1 ǫi = n

) .

By using the asymptotic normality of the joint distribution of
(
G̃

p

TN
f,
∑N

i=1 ǫi

)

under the Poisson sampling and the fact that the two components are asymp-

totically uncorrelated, this immediately ensures that as N tends to infinity,

PRN

(
G

p

RN
f ≤ x

)
is equivalent to PTN

(
G̃

p

TN
f ≤ x

)
. It is thus sufficient to study

the behavior of the correctly recentered process (G̃p

TN
f)f∈F .

As claimed by Theorem 4.2 in the next section, this result can be extended

to a functional framework under adequate hypotheses. Combined with an ap-

17
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proximation result, it will serve as the main tool for proving next a similar

result in the context of rejective sampling. In the subsequent analysis, we start

off by establishing that the process G̃
p

TN
can be asymptotically approximated

by a Gaussian process.

4 Asymptotic results

The main results of the paper are stated in the present section. As a first go,

we establish a FCLT for the empirical process variant of Eq. (3) in the Poisson

survey scheme case, before extending it to the rejective design.

4.1 Limit of the empirical process for the Poisson survey

scheme

The purpose of this section is to obtain a Gaussian approximation of the empir-

ical process G̃p

TN
related to a Poisson survey plan TN with first order inclusion

probabilities p = (p1, . . . , pN) depending on some auxiliary variable W (see

Section 2.1.3). The proof relies on Theorem 2.11.1 in van der Vaart and Well-

ner (1996), applied to the triangular collection of independent variables defined

for all f ∈ F by

ZN,i(f) := ZN,i(f,ǫ) :=
1√
N
(ǫi − pi)

(
f(Xi)

pi
− θN,p(f)

)
for i ∈ {1, . . . , N},

conditionally on the full vector (Xi,Wi)1≤i≤N and for almost every such se-

quences. For clarity, the result is recalled below.

Theorem 4.1 – Triangular arrays (van der Vaart and Wellner, 1996).

Let ZN,i(f), 1 ≤ i ≤ N be independent F-indexed stochastic processes defined on

the product probability space
∏N

i=1({0, 1},P({0, 1}),B(πi(RN)) where the process

ZN,i(f) := ZN,i(f,ǫ) only depends on the ith coordinate of ǫ := (ǫ1, . . . , ǫN).

Assume that the maps

(ǫ1, . . . , ǫN) 7→ sup
ρP(f,g)<δ

∣∣∣∣∣

N∑

i=1

ei (ZN,i(f,ǫ) − ZN,i(g,ǫ))

∣∣∣∣∣

18
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and

(ǫ1, . . . , ǫN) 7→ sup
ρP(f,g)<δ

∣∣∣∣∣

N∑

i=1

ei (ZN,i(f) − ZN,i(g))
2

∣∣∣∣∣

are measurable for every δ > 0, every (e1, . . . , eN) ∈ {−1, 0, 1}N and every

N ∈ N. Further define the random semi-metric

d2
N(f, g) :=

N∑

i=1

(ZN,i(f) − ZN,i(g))
2
,

and suppose that the following conditions are fulfilled, conditionally on the full

vector (Xi,Wi)1≤i≤N and for almost every such sequences.

i)
N∑

i=1

E
(
‖ZN,i(f)‖2F · I {‖ZN,i(f)‖F > η}

)
−→
N→∞

0 for every η > 0.

ii) sup
ρP(f,g)<δ

N∑

i=1

E

(
(ZN,i(f) − ZN,i(g))

2
)

−→
N→∞

0 as δ → 0.

iii)
∫δ
0

√
logN (ε,F , dN)dε −→

N→∞

0 as δ → 0.

iv) The sequence of covariance functions cov (ZN,i(f), ZN,i(g)) converges point-

wise on F × F as N → ∞ to a non degenerate limit Σ(f, g).

Then the sequence
∑N

i=1 (ZN,i(f) − E (ZN,i(f))) is ρP-equicontinuous and con-

verges in ℓ∞(F) to a Gaussian process with covariance function Σ(f, g).

4.1.1 Convergence of the covariance operator

The following intermediary results show that condition iv) in Theorem 4.1 is

fulfilled in the particular case of Poisson survey plans. For (f, g) ∈ F2, set

covN,p(f, g) :=
1

N

N∑

i=1

(
f(Xi)

pi
− θN,p(f)

)(
g(Xi)

pi
− θN,p(g)

)
pi(1− pi).

Due to the independence of the ǫi’s, it is clear that

covTN

(
G̃

p

TN
(f), G̃

p

TN
(g)
)
:= cov

(
G̃

p

TN
(f), G̃

p

TN
(g)

∣∣ (Xi,Wi)1≤i≤N

)

= covN,p(f, g).
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We thus essentially have to determine conditions ensuring that covN,p(f, g) has

a non-degenerate limit. The following assumptions are by no means necessary

but provide a useful framework to derive such conditions. Similar types of

assumptions may be found in Bonnéry et al. (2011) or Hàjek (1964) for instance.

Recall that inclusion probabilities were defined relative to some auxiliary

variable W. An additional assumption on the latter is required in the subse-

quent result.

Assumption 4.1 The couples of random vectors (X1,W1), . . . , (XN,WN) are

iid (exchangeable at least) with distribution PX,W. Moreover, the conditional

inclusion probabilities p := (p1, . . . , pN) are given for all i ∈ {1, . . . ,N} and

W(N) ∈ WN by

pi := p(Wi) := E
(
ǫi
∣∣W(N)

)
.

Remark 4.1 It can happen that pi not only depends on Wi, but on the entire

vector W(N). It is the case, for instance, when there is a unique auxiliary

variable W to which weights are proportional:

pi := n
Wi

∑N
j=1 Wj

.

In such situations the iid property of the vectors (Xi,Wi), 1 ≤ i ≤ N, can be

used to bypass the part involving all (W1, . . . ,WN) in the subsequent asymptotic

analysis.

Under this supplementary condition, we have the following result, the proof

of which can be found in the Supplementary Materials.

Lemma 4.1 – Limit of the covariance operator. Suppose that Assump-

tions 2.1, 2.2 and 4.1 are fulfilled. Then we almost-surely have

1

N
dN −→

N→∞

Dp :=

∫

W

(1− p(w))p(w)PW(dw) > 0

and

covN,p(f, g) −→
N→∞

Σ(f, g),
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where for all (f, g) ∈ F2,

Σ(f, g) :=

∫

X×W

f(x)g(x)

(
1

p(w)
− 1

)
PX,W(dx, dw) − θp(f)θp(g)Dp, (4)

with

θp(f) :=
1

Dp

∫

X×W

(1− p(w)) f(x)PX,W(dx, dw).

4.1.2 Functional Central Limit Theorem

Applying Theorem 4.1 to the empirical process G̃
p

TN
f defined in Eq. (3) thus

leads to the theorem below, proved in the Supplementary Materials.

Theorem 4.2 – FCLT in the Poisson survey case. Suppose that As-

sumptions 2.1, 2.2 and 4.1 hold, as well as the following conditions.

i) Lindeberg-Feller type condition: ∀η > 0,

E

(
(ZN,i)

2
I

{
ZN,i > η

√
N
})

−→
N→∞

0,

with ZN,i := (ǫi − p(Wi)) supf∈F

∣∣∣∣
f(Xi)

p(Wi)
− θN,p(f)

∣∣∣∣.

ii) Uniform entropy condition: let D be the set of all finitely discrete proba-

bility measures defined in Section 2.2.3, and assume
∫
∞

0

sup
Q∈D

√
log(N(ε‖H‖2,Q,F , ‖.‖2,Q)dε < ∞.

Then there exists a ρP-equicontinuous Gaussian process G in ℓ∞(F) with co-

variance operator Σ given by Eq. (4) such that

G̃
p

TN
⇒ G weakly in ℓ∞(F), as N → ∞.

Remark 4.2 – On the Lindeberg-Feller condition. Observe that, as can be

proved using Hölder’s inequality, condition i) in Theorem 4.2 can be replaced

by the simpler condition: ∃ δ > 0 such that

i∗) EPX,W

(∣∣∣∣
H(Xi)

p(Wi)

∣∣∣∣
2+δ

ETN

(
(ǫi − p(Wi))

2+δ
∣∣ (Xi,Wi)

))
< +∞.
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4.2 The case of rejective sampling and its variants

As shall be shown herein-after, the result obtained above in the case of a Poisson

sampling scheme may carry over to more general survey plans, as originally

proposed in the seminal contribution of Hàjek (1964).

4.2.1 Empirical process for the rejective sampling

The Central Limit Theorem for rejective sampling and some variants of this

survey scheme has been studied at length in Hàjek (1964). Consider the rejective

sampling scheme defined in Example 2.4 from a given vector πR corresponding

to the vector p := (p1, . . . , pN) = (p(W1), . . . , p(WN)) =: p(W). Assume in

addition that the representation is canonical, i.e. is such that
∑N

i=1 p(Wi) = n.

The key argument in Hàjek (1964) for proving a CLT in the rejective sampling

case consists in exhibiting a certain coupling ((ǫ1, . . . , ǫN), (ǫ∗1, . . . , ǫ
∗
N)) of the

Poisson sampling scheme with inclusion probabilities p(W1), . . . , p(WN) and

the rejective sampling scheme with corresponding inclusion probabilities πR, see

Hàjek (1964, p. 1503-1504) for further details. We point out that, under the

rejective sampling scheme, the survey size is fixed, so that

N∑

i=1

(ǫi − p(Wi)) = n− n = 0.

Thus, we have:

G̃
p

RN
f :=

1√
N

N∑

i=1

(ǫi − p(Wi))

(
f(Xi)

p(Wi)
− θN,p(f)

)

=
1√
N

N∑

i=1

(
ǫi

p(Wi)
− 1

)
f(Xi)

=: G
p(W)

RN
f.

Hence, the Poisson-like empirical process coincides, in that case, with the

original HT-empirical process where the weights p(W) are involved instead

of the true inclusion probabilities π
R, the latter being however asymptotically

equivalent to the former, see Hàjek (1964).
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The next theorem is obtained by noticing that rejective sampling is a Poisson

sampling conditioned on a fixed sample size.

Theorem 4.3 – FCLT in the rejective survey with Poisson weights

case. Suppose that Assumptions 2.1, 2.2, 4.1 and conditions i) and ii) of

Theorem 4.2 are satisfied. Then, there exists a ρP-equicontinuous Gaussian

process G in ℓ∞(F) with covariance operator Σ given by Eq. (4) such that

G
p(W)

RN
⇒ G weakly in ℓ∞(F), as N → ∞.

Going back to the original HT-empirical process in Eq. (2) related to the

plan RN, the corollary below reveals that the asymptotic result still holds true

for the latter (see the proof in the Supplementary Materials). This essentially

follows from the fact that the weights p(W) and the inclusion probabilities

corresponding to the rejective sampling are asymptotically equivalent.

Corollary 4.1 – FCLT in the rejective survey case. Suppose that As-

sumptions 2.1, 2.2, 4.1 and conditions i) and ii) of Theorem 4.2 are satisfied.

Then, there exists a ρP-equicontinuous Gaussian process G in ℓ∞(F) with co-

variance operator Σ given by Eq. (4) such that

G
π(RN)

RN
⇒ G weakly in ℓ∞(F), as N → ∞.

This result generates many applications such as those introduced in the

Supplementary Materials. In particular, one may deduce from Corollary 4.1

the asymptotic Normality of Hadamard- or Fréchet-differentiable functionals.

In order to illustrate the practical assets of our theoretical results, numerical

experiments were performed, the outcomes of which are also displayed in the

Supplementary Materials. They show how confidence bands of the cumulative

distribution function may be constructed in the context of a Rejective sampling

scheme.
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4.2.2 Extension to other sampling designs

The lemma stated below, following in the footsteps of Berger (1998), shows that

the study of the empirical process related to a general sampling design R̃N may

be reduced to that related to a simpler sampling design, RN say, which is close

to R̃N with respect to some metric and entirely characterized by its first order

inclusion probabilities. The only “drawback” is that the estimator involved in

this approximation result is not the Horvitz-Thompson estimator, since it does

not involves the inclusion probabilities of the sampling plan of interest but those

related to R̃N (Hàjek, 1964). However, as will be shown next, the two estimators

may asymptotically coincide, as N tends to +∞.

In order to formulate the approximation result needed in the sequel, we

introduce, for two sampling designs R̃N and RN, the total variation metric

‖R̃N − RN‖1 :=
∑

s∈P(UN)

∣∣∣R̃N(s) − RN(s)
∣∣∣ ,

as well as the entropy

D(RN, R̃N) :=
∑

s∈P(UN)

RN(s) log

(
RN(s)

R̃N(s)

)
.

In practice, RN will typically be the rejective sampling plan investigated in the

previous subsection and G
π(RN)

RN
the corresponding empirical process.

Lemma 4.2 – Approximation result. Let R̃N and RN be two sampling

designs, then the empirical processes G
π(RN)

RN
and G

π(RN)

R̃N

valued in ℓ∞(F) satisfy

the relationships:

dBL

(
G

π(RN)

RN
,G

π(RN)

R̃N

)
≤ ‖R̃N − RN‖1 ≤

√
2D(RN, R̃N).

Consequently, if the sequences (R̃N)N≥1 and (RN)N≥1 are such that ‖R̃N−RN‖1
tends to 0 or D(RN, R̃N) → 0 as N → ∞ and if there exists a Gaussian process

G such that

dBL

(
G

π(RN)

RN
,G
)

−→
N→∞

0,
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then we also have

dBL

(
G

π(RN)

R̃N

,G
)

−→
N→∞

0.

This result, proved in the Supplementary Materials, reveals that as soon as a

possibly complicated survey design R̃N can be approximated by a simpler one

RN through some coupling argument ensuring that the ‖.‖1 distance between

them decays to zero (as in Berger, 1998), then an asymptotic approximation

result possibly holding true for the empirical process related to RN immediately

extends to that related to R̃N, when built with the inclusion probabilities π(RN).

If in addition π(R̃N) and π(RN) are asymptotically uniformly close (as is the case

for the inclusion probabilities of the rejective and the Poisson survey schemes,

see Hàjek, 1964), then the result also extends to the empirical process related to

R̃N involving the inclusion probabilities π(R̃N). A typical situation where this

result applies corresponds to the case where R̃N is a Rao-Sampford or successive

sampling design, while RN is a rejective sampling design, as in Berger (1998,

2011).

5 Discussion

Generalizing the seminal work of Breslow and Wellner (2007) and Saegusa and

Wellner (2011) to the case of Poisson-like survey schemes with unequal first

order inclusion probabilities depending on some appropriate auxiliary variable,

we introduced in Section 3 a Horvitz-Thompson version of the empirical pro-

cess the asymptotic properties of which were analyzed at length. The exhibited

rate of convergence appeared to be the same as that of the standard empir-

ical process, namely
√
N. Natural applications of these results to Hadamard-

and Fréchet-differentiable functionals were also considered in the Supplementary

Materials, in which simulations were performed to illustrate their utility in the

construction of uniform confidence band intervals around the empirical cumu-

lative distribution function in the entire population. Many improvements may

be brought to these first results, for instance situations where the true inclusion
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probabilities are not available and replaced by an estimated version issued from

post-calibration methods could be inspected. The assumptions made on the in-

clusion probabilities are also quite restrictive. Following in the lines of Boistard

et al. (2012), higher order conditions could permit to get rid of Assumption 2.1.

Other sampling designs that can be written as a conditional Poisson scheme

may be considered as well, like stratified sampling introduced in Example 2.3.

In view of the empirical results presented in the Supplementary Materials,

it is clear that the definition of the inclusion probabilities could be handled

so as to minimize the variance of the estimators of interest. So proceeding

would be of great interest in the context of big data management. Indeed, it is

more and more frequent to meet databases that increase regularly (in finance,

information about the markets is stocked every hour at least) and cannot be

saved, thus analyzed, on a single computer. When accessing such huge files

becomes a challenge, sampling is a natural solution, as was already underlined

by Cardot et al. (2013). In this context, the superpopulation model and the

asymptotic nature of our results are perfectly relevant. Moreover, the analyst

has then complete control over the survey scheme they desire to adopt, which

is typically rarely the case with institutional data. Hence, the Poisson and

rejective schemes, which are not of frequent use in practice, are revealed as

especially convenient for such types of analyses.

Supporting Information
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